EconPapers    
Economics at your fingertips  
 

A Systematic Literature Review on Graphics Processing Unit Accelerated Realm of High-Performance Computing

Rajat Suvra Das ()

International Journal of Computing and Engineering, 2024, vol. 5, issue 3, 10 - 21

Abstract: GPUs (Graphics Processing Units) are widely used due to their impressive computational power and parallel computing ability.It have shown significant potential in improving the performance of HPC applications. This is due to their highly parallel architecture, which allows for the execution of multiple tasks simultaneously. However, GPU computing is synonymous with CUDA in providing applications for GPU devices. This offers enhanced development tools and comprehensive documentation to increase performance, while AMD's ROCm platform features an application programming interface compatible with CUDA. Hence, the main objective of the systematic literature review is to thoroughly analyze and compute the performance characteristics of two prominent GPU computing frameworks, namely NVIDIA's CUDA and AMD's ROCm (Radeon Open Compute). By meticulously examining the strengths, weaknesses, and overall performance capabilities of CUDA and ROCm, a deeper understanding of these concepts is gained and will benefit researchers. The purpose of the research on GPU accelerated HPC is to provide a comprehensive and unbiased overview of the current state of research and development in this area. It can help researchers, practitioners, and policymakers understand the role of GPUs in HPC and facilitate evidence-based decision making. In addition, different real-time applications of CUDA and ROCm platforms are also discussed to explore potential performance benefits and trade-offs in leveraging these techniques. The insights provided by the study will empower the way to make well-informed decisions when choosing between CUDA and ROCm approaches that apply to real-world software.

Keywords: Compute Unified Device Architecture; Graphics Processing Unit; High-Performance Computing; Performance Analysis; Radeon Open Compute. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://carijournals.org/journals/index.php/IJCE/article/view/1813/2214 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bhx:ojijce:v:5:y:2024:i:3:p:10-21:id:1813

Access Statistics for this article

More articles in International Journal of Computing and Engineering from CARI Journals Limited
Bibliographic data for series maintained by Chief Editor ().

 
Page updated 2025-03-19
Handle: RePEc:bhx:ojijce:v:5:y:2024:i:3:p:10-21:id:1813