EconPapers    
Economics at your fingertips  
 

Exploring Dimensionality Reduction Techniques for Improved Breast Cancer Diagnosis

Akampurira Paul, Mutebi Joe, Mugisha Brian, Muhaise Hussein and Kyomuhangi Rosette
Additional contact information
Akampurira Paul: Kampala International University, Uganda
Mutebi Joe: Kampala International University, Uganda
Mugisha Brian: Kampala International University, Uganda
Muhaise Hussein: Kampala International University, Uganda
Kyomuhangi Rosette: Kampala International University, Uganda

International Journal of Research and Scientific Innovation, 2024, vol. 11, issue 5, 808-824

Abstract: A crucial area of medical study is the diagnosis of breast cancer, where managing the inherent complexity of high-dimensional information poses a challenge in addition to precise identification. In order to improve diagnostic accuracy, this research investigates dimensionality reduction strategies. This study’s main goal was to improve the accuracy and interpret ability of breast cancer diagnosis by using dimensionality reduction techniques. The goal of the study is to find significant patterns for useful diagnostic models by examining how preprocessing methods affect a high-dimensional dataset. Starting with a dataset including 569 observations and 30 attributes, careful examination reveals imbalances in the dataset (63% benign, 37% malignant). We used Pearson correlation coefficients to detect and eliminate highly correlated features in order to address multi collinearity. A subsequent adjustment of the data using min-max normalization guarantees consistent weighting. Then, for thorough dimensionality reduction, Principal Component Analysis (PCA) is employed. Screep lots and biplots are used to visually represent data, highlighting how well-suited early principle components are for separating benign from malignant instances. Our findings confirm the effectiveness of the procedure by showing a significant 24% decrease in data dimensionality. This work highlights the critical role that dimensionality reduction plays in improving breast cancer diagnosis for more precise, effective, and understandable models, and it calls for further investigation of the specific findings.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.rsisinternational.org/journals/ijrsi/d ... -issue-5/808-824.pdf (application/pdf)
https://rsisinternational.org/journals/ijrsi/artic ... st-cancer-diagnosis/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bjc:journl:v:11:y:2024:i:5:p:808-824

Access Statistics for this article

International Journal of Research and Scientific Innovation is currently edited by Dr. Renu Malsaria

More articles in International Journal of Research and Scientific Innovation from International Journal of Research and Scientific Innovation (IJRSI)
Bibliographic data for series maintained by Dr. Renu Malsaria ().

 
Page updated 2025-03-19
Handle: RePEc:bjc:journl:v:11:y:2024:i:5:p:808-824