EconPapers    
Economics at your fingertips  
 

Review on Leaf Plant Disease Classification Using Machine Learning Techniques

U. I. Ismail and M. K. Ahmed
Additional contact information
U. I. Ismail: Department of Computer Science Federal University of Kashere, Gombe Nigeria
M. K. Ahmed: Department of Computer Science Gombe state University, Gombe Nigeria

International Journal of Research and Innovation in Applied Science, 2021, vol. 6, issue 11, 01-05

Abstract: Agriculture plays a vital role in the world economy. It basically provides job opportunities for the teaming population, eradicates poverty and contributes to the growth of the economy. Hence the need for improved effort for classifying diseases in plant from its leaf is important as it leads to increase in crop yield. Machine learning methods had being used in leaves plant diseases classification. This paper reviews various techniques used for plant leaf disease classification, and found that Most of the researchers used Support Vector Machine (SVM) algorithms for plant disease classification which they concluded that (SVM) is not suitable for large dataset and it does not perform very well when the dataset has more noise, also the target class will be overlapping. To overcome this difficulties a proposed methodology with different approaches to Machine learning was suggested; Deep learning is a sort of machine learning in which a model figures out how to accomplish classification tasks in a direct way from pictures, Neural network will be train using Fine-tuning techniques on different neural networks architectures and at the end comparisons will be done to find out the best neural networks that will be the best for providing an improved solution for leaf plant disease classification by checking their performance best on their accuracy and confusion matrix.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.rsisinternational.org/journals/ijrias/ ... 6-issue-11/01-05.pdf (application/pdf)
https://www.rsisinternational.org/virtual-library/ ... 051938702.1694191524 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bjf:journl:v:6:y:2021:i:11:p:01-05

Access Statistics for this article

International Journal of Research and Innovation in Applied Science is currently edited by Dr. Renu Malsaria

More articles in International Journal of Research and Innovation in Applied Science from International Journal of Research and Innovation in Applied Science (IJRIAS)
Bibliographic data for series maintained by Dr. Renu Malsaria ().

 
Page updated 2025-03-19
Handle: RePEc:bjf:journl:v:6:y:2021:i:11:p:01-05