EconPapers    
Economics at your fingertips  
 

Data preprocessing and data parsimony in corporate failure forecast models: evidence from Australian materials industry

Weiping Wu, Vincent Cheng Siong Lee and Ting Yean Tan

Accounting and Finance, 2006, vol. 46, issue 2, 327-345

Abstract: The present study, based on data for delisted and active corporations in the Australian materials industry, is an attempt to develop a systematic way of selecting corporate failure‐related features. We empirically tested the proposed procedure using three datasets. The first dataset contains 82 financial economic factors from the corporation's financial statement. The second dataset comprises 73 relevant financial ratios, which either directly or indirectly measure a corporation's propensity to fail, and are conciliated from the first dataset. The third dataset is a parsimonious dataset obtained from the application of combining a filter and a wrapper to preprocess the first dataset. The robustness of this preprocessed dataset is tested by comparing its performance with the first and second datasets in two statistical (logistic regression and naïve‐Bayes) and two machine learning (decision tree, neural network) classes of prediction models. Tests for prediction accuracies and reliabilities, using the computational (ROC curve, AUC) and the statistical (Cochran's Q statistic) criteria show that the third dataset outperforms the other two datasets in all four predicting models, achieving various accuracies ranges from 81 per cent to 84 per cent.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1467-629X.2006.00170.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:acctfi:v:46:y:2006:i:2:p:327-345

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0810-5391

Access Statistics for this article

Accounting and Finance is currently edited by Robert Faff

More articles in Accounting and Finance from Accounting and Finance Association of Australia and New Zealand Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:acctfi:v:46:y:2006:i:2:p:327-345