A dynamic adoption model with Bayesian learning: an application to U.S. soybean farmers
Xingliang Ma () and
Guanming Shi
Agricultural Economics, 2015, vol. 46, issue 1, 25-38
Abstract:
Adoption of agricultural technology is often sequential, with farmers first adopting a new technology on part of their lands and then adjusting their use of the new technology in later years based on what was learned from the initial partial adoption. Our article explains this experimental behavior by using a dynamic adoption model with Bayesian learning, in which forward-looking farmers take account of future impacts of their learning from both their own and their neighbors’ experiences with the new technology. We apply the analysis to a panel of U.S. soybean farmers surveyed from 2000 to 2004 to examine their adoption of the genetically modified (GM) seed technology. We compare the results of the forward-looking model to that of a myopic model, in which farmers maximize current benefits only. Results suggest that the forward-looking model fits data better than the myopic model does. And potential estimation biases arise when fitting a myopic model to forward-looking decision makers.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://hdl.handle.net/10.1111/agec.12124 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:agecon:v:46:y:2015:i:1:p:25-38
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0169-5150
Access Statistics for this article
Agricultural Economics is currently edited by W.A. Masters and G.E. Shively
More articles in Agricultural Economics from International Association of Agricultural Economists Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().