Bayesian estimation and model comparison for linear dynamic panel models with missing values
Christian Aßmann and
Marcel Preising
Australian & New Zealand Journal of Statistics, 2020, vol. 62, issue 4, 536-557
Abstract:
Panel data are collected over several time periods for the same units and hence allow for modelling both latent heterogeneity and dynamics. Since in a dynamic setup, the dependent variable also appears as an explanatory variable in later periods, missing values lead to substantial loss of information and the possibility of inefficient estimation. For linear dynamic panel models with fixed or random effects, we suggest a Bayesian approach to deal with missing values. The Gibbs sampling scheme providing a sample from the posterior distribution is thereby augmented by draws from the full conditional distribution of the missing values. While the full conditional distribution for missing values in the dependent variable is implied by the model setup, we incorporate a flexible non‐parametric approximation to the full conditional posterior distribution of missing values in the explaining variables. Also, we provide accurate non‐nested model comparison in terms of the marginal likelihood from the resulting hybrid Gibbs sampling output. The properties and possible efficiency gains of the suggested approach are illustrated by means of a simulation study and an empirical application using a macroeconomic panel data set.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/anzs.12316
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:anzsta:v:62:y:2020:i:4:p:536-557
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1369-1473
Access Statistics for this article
Australian & New Zealand Journal of Statistics is currently edited by Chris J. Lloyd, Rob J. Hyndman and Russell B. Millar
More articles in Australian & New Zealand Journal of Statistics from Australian Statistical Publishing Association Inc.
Bibliographic data for series maintained by Wiley Content Delivery ().