Optimal Designs for Evaluating a Series of Treatments
Denis Heng‐Yan Leung and
You‐Gan Wang
Biometrics, 2001, vol. 57, issue 1, 168-171
Abstract:
Summary. Several articles in this journal have studied optimal designs for testing a series of treatments to identify promising ones for further study. These designs formulate testing as an ongoing process until a promising treatment is identified. This formulation is considered to be more realistic but substantially increases the computational complexity. In this article, we show that these new designs, which control the error rates for a series of treatments, can be reformulated as conventional designs that control the error rates for each individual treatment. This reformulation leads to a more meaningful interpretation of the error rates and hence easier specification of the error rates in practice. The reformulation also allows us to use conventional designs from published tables or standard computer programs to design trials for a series of treatments. We illustrate these using a study in soft tissue sarcoma.
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.0006-341X.2001.00168.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:57:y:2001:i:1:p:168-171
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().