Factor Analytic Models of Clustered Multivariate Data with Informative Censoring
David B. Dunson and
Sally D. Perreault
Biometrics, 2001, vol. 57, issue 1, 302-308
Abstract:
Summary. This article describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster‐level latent variables related to the primary outcomes and to the censoring process, and we account for dependency between these latent variables through a hierarchical model. A linear model is used to relate covariates and latent variables to the primary outcomes for each subunit. A generalized linear model accounts for covariate and latent variable effects on the probability of censoring for subunits within each cluster. The model accounts for correlation within clusters and within subunits through a flexible factor analytic framework that allows multiple latent variables and covariate effects on the latent variables. The structure of the model facilitates implementation of Markov chain Monte Carlo methods for posterior estimation. Data from a spermatotoxicity study are analyzed to illustrate the proposed approach.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.0006-341X.2001.00302.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:57:y:2001:i:1:p:302-308
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().