EconPapers    
Economics at your fingertips  
 

Multilevel Models for Survival Analysis with Random Effects

Kelvin K. W. Yau

Biometrics, 2001, vol. 57, issue 1, 96-102

Abstract: Summary. A method for modeling survival data with multilevel clustering is described. The Cox partial likelihood is incorporated into the generalized linear mixed model (GLMM) methodology. Parameter estimation is achieved by maximizing a log likelihood analogous to the likelihood associated with the best linear unbiased prediction (BLUP) at the initial step of estimation and is extended to obtain residual maximum likelihood (REML) estimators of the variance component. Estimating equations for a three‐level hierarchical survival model are developed in detail, and such a model is applied to analyze a set of chronic granulomatous disease (CGD) data on recurrent infections as an illustration with both hospital and patient effects being considered as random. Only the latter gives a significant contribution. A simulation study is carried out to evaluate the performance of the REML estimators. Further extension of the estimation procedure to models with an arbitrary number of levels is also discussed.

Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1111/j.0006-341X.2001.00096.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:57:y:2001:i:1:p:96-102

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:96-102