EconPapers    
Economics at your fingertips  
 

A KPSS Test for Stationarity for Spatial Point Processes

Yongtao Guan

Biometrics, 2008, vol. 64, issue 3, 800-806

Abstract: Summary We propose a formal method to test stationarity for spatial point processes. The proposed test statistic is based on the integrated squared deviations of observed counts of events from their means estimated under stationarity. We show that the resulting test statistic converges in distribution to a functional of a two‐dimensional Brownian motion. To conduct the test, we compare the calculated statistic with the upper tail critical values of this functional. Our method requires only a weak dependence condition on the process but does not assume any parametric model for it. As a result, it can be applied to a wide class of spatial point process models. We study the efficacy of the test through both simulations and applications to two real data examples that were previously suspected to be nonstationary based on graphical evidence. Our test formally confirmed the suspected nonstationarity for both data.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/j.1541-0420.2007.00977.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:64:y:2008:i:3:p:800-806

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:64:y:2008:i:3:p:800-806