Shrinkage Empirical Likelihood Estimator in Longitudinal Analysis with Time‐Dependent Covariates—Application to Modeling the Health of Filipino Children
Denis Heng‐Yan Leung,
Dylan S. Small,
Jing Qin and
Min Zhu
Biometrics, 2013, vol. 69, issue 3, 624-632
Abstract:
The method of generalized estimating equations (GEE) is a popular tool for analysing longitudinal (panel) data. Often, the covariates collected are time‐dependent in nature, for example, age, relapse status, monthly income. When using GEE to analyse longitudinal data with time‐dependent covariates, crucial assumptions about the covariates are necessary for valid inferences to be drawn. When those assumptions do not hold or cannot be verified, Pepe and Anderson (1994, Communications in Statistics, Simulations and Computation 23, 939–951) advocated using an independence working correlation assumption in the GEE model as a robust approach. However, using GEE with the independence correlation assumption may lead to significant efficiency loss (Fitzmaurice, 1995, Biometrics 51, 309–317). In this article, we propose a method that extracts additional information from the estimating equations that are excluded by the independence assumption. The method always includes the estimating equations under the independence assumption and the contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries. We apply the method to a longitudinal study of the health of a group of Filipino children.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.12039
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:69:y:2013:i:3:p:624-632
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().