Multiple testing for neuroimaging via hidden Markov random field
Hai Shu,
Bin Nan and
Robert Koeppe
Biometrics, 2015, vol. 71, issue 3, 741-750
Abstract:
Traditional voxel‐level multiple testing procedures in neuroimaging, mostly p‐value based, often ignore the spatial correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local‐significance‐index based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate subject to a constraint on the false discovery rate, to three‐dimensional neuroimaging data using a hidden Markov random field model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with increased risk of developing Alzheimer's or another dementia, and normal controls in the FDG‐PET imaging study of the Alzheimer's Disease Neuroimaging Initiative.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/biom.12329
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:71:y:2015:i:3:p:741-750
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().