EconPapers    
Economics at your fingertips  
 

Equivalence of kernel machine regression and kernel distance covariance for multidimensional phenotype association studies

Wen‐Yu Hua and Debashis Ghosh

Biometrics, 2015, vol. 71, issue 3, 812-820

Abstract: Associating genetic markers with a multidimensional phenotype is an important yet challenging problem. In this work, we establish the equivalence between two popular methods: kernel‐machine regression (KMR), and kernel distance covariance (KDC). KMR is a semiparametric regression framework that models covariate effects parametrically and genetic markers non‐parametrically, while KDC represents a class of methods that include distance covariance (DC) and Hilbert–Schmidt independence criterion (HSIC), which are nonparametric tests of independence. We show that the equivalence between the score test of KMR and the KDC statistic under certain conditions can lead to a novel generalization of the KDC test that incorporates covariates. Our contributions are 3‐fold: (1) establishing the equivalence between KMR and KDC; (2) showing that the principles of KMR can be applied to the interpretation of KDC; (3) the development of a broader class of KDC statistics, where the class members are statistics corresponding to different kernel combinations. Finally, we perform simulation studies and an analysis of real data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. The ADNI study suggest that SNPs of FLJ16124 exhibit pairwise interaction effects that are strongly correlated to the changes of brain region volumes.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.12314

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:71:y:2015:i:3:p:812-820

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:71:y:2015:i:3:p:812-820