Nonparametric Bayes modeling for case control studies with many predictors
Jing Zhou,
Amy H. Herring,
Anirban Bhattacharya,
Andrew F. Olshan and
David B. Dunson
Biometrics, 2016, vol. 72, issue 1, 184-192
Abstract:
type="main" xml:lang="en">
It is common in biomedical research to run case-control studies involving high-dimensional predictors, with the main goal being detection of the sparse subset of predictors having a significant association with disease. Usual analyses rely on independent screening, considering each predictor one at a time, or in some cases on logistic regression assuming no interactions. We propose a fundamentally different approach based on a nonparametric Bayesian low rank tensor factorization model for the retrospective likelihood. Our model allows a very flexible structure in characterizing the distribution of multivariate variables as unknown and without any linear assumptions as in logistic regression. Predictors are excluded only if they have no impact on disease risk, either directly or through interactions with other predictors. Hence, we obtain an omnibus approach for screening for important predictors. Computation relies on an efficient Gibbs sampler. The methods are shown to have high power and low false discovery rates in simulation studies, and we consider an application to an epidemiology study of birth defects.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:1:p:184-192
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().