Estimating DNA methylation levels by joint modeling of multiple methylation profiles from microarray data
Tao Wang,
Mengjie Chen and
Hongyu Zhao
Biometrics, 2016, vol. 72, issue 2, 354-363
Abstract:
type="main" xml:lang="en">
DNA methylation studies have been revolutionized by the recent development of high throughput array-based platforms. Most of the existing methods analyze microarray methylation data on a probe-by-probe basis, ignoring probe-specific effects and correlations among methylation levels at neighboring genomic locations. These methods can potentially miss functionally relevant findings associated with genomic regions. In this article, we propose a statistical model that allows us to pool information on the same probe across multiple samples to estimate the probe affinity effect, and to borrow strength from the neighboring probe sites to better estimate the methylation values. Using a simulation study, we demonstrate that our method can provide accurate model-based estimates. We further use the proposed method to develop a new procedure for detecting differentially methylated regions, and compare it with a state-of-the-art approach via a data application.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:2:p:354-363
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().