EconPapers    
Economics at your fingertips  
 

A flexible AFT model for misclassified clustered interval-censored data

María José García-Zattera, Alejandro Jara and Arnošt Komárek

Biometrics, 2016, vol. 72, issue 2, 473-483

Abstract: type="main" xml:lang="en">

Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:2:p:473-483

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:473-483