Mediation analysis for survival data using semiparametric probit models
Yen-Tsung Huang and
Tianxi Cai
Biometrics, 2016, vol. 72, issue 2, 563-574
Abstract:
type="main" xml:lang="en">
Causal mediation modeling has become a popular approach for studying the effect of an exposure on an outcome through mediators. Currently, the literature on mediation analyses with survival outcomes largely focused on settings with a single mediator and quantified the mediation effects on the hazard, log hazard and log survival time (Lange and Hansen 2011; VanderWeele 2011). In this article, we propose a multi-mediator model for survival data by employing a flexible semiparametric probit model. We characterize path-specific effects (PSEs) of the exposure on the outcome mediated through specific mediators. We derive closed form expressions for PSEs on a transformed survival time and the survival probabilities. Statistical inference on the PSEs is developed using a nonparametric maximum likelihood estimator under the semiparametric probit model and the functional Delta method. Results from simulation studies suggest that our proposed methods perform well in finite sample. We illustrate the utility of our method in a genomic study of glioblastoma multiforme survival.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:2:p:563-574
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().