A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data
Shuo Chen,
F. DuBois Bowman and
Helen S. Mayberg
Biometrics, 2016, vol. 72, issue 2, 596-605
Abstract:
type="main" xml:lang="en">
We propose a novel Bayesian hierarchical model for brain imaging data that unifies voxel-level (the most localized unit of measure) and region-level brain connectivity analyses, and yields population-level inferences. Functional connectivity generally refers to associations in brain activity between distinct locations. The first level of our model summarizes brain connectivity for cross-region voxel pairs using a two-component mixture model consisting of connected and nonconnected voxels. We use the proportion of connected voxel pairs to define a new measure of connectivity strength, which reflects the breadth of between-region connectivity. Furthermore, we evaluate the impact of clinical covariates on connectivity between region-pairs at a population level. We perform parameter estimation using Markov chain Monte Carlo (MCMC) techniques, which can be executed quickly relative to the number of model parameters. We apply our method to resting-state functional magnetic resonance imaging (fMRI) data from 32 subjects with major depression and simulated data to demonstrate the properties of our method.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:2:p:596-605
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().