EconPapers    
Economics at your fingertips  
 

Capitalizing on opportunistic data for monitoring relative abundances of species

Christophe Giraud, Clément Calenge, Camille Coron and Romain Julliard

Biometrics, 2016, vol. 72, issue 2, 649-658

Abstract: type="main" xml:lang="en">

With the internet, a massive amount of information on species abundance can be collected by citizen science programs. However, these data are often difficult to use directly in statistical inference, as their collection is generally opportunistic, and the distribution of the sampling effort is often not known. In this article, we develop a general statistical framework to combine such “opportunistic data” with data collected using schemes characterized by a known sampling effort. Under some structural assumptions regarding the sampling effort and detectability, our approach makes it possible to estimate the relative abundance of several species in different sites. It can be implemented through a simple generalized linear model. We illustrate the framework with typical bird datasets from the Aquitaine region in south-western France. We show that, under some assumptions, our approach provides estimates that are more precise than the ones obtained from the dataset with a known sampling effort alone. When the opportunistic data are abundant, the gain in precision may be considerable, especially for rare species. We also show that estimates can be obtained even for species recorded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount of data collected with a known effort may thus provide access to accurate and precise estimates of quantitative changes in relative abundance over space and/or time.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:2:p:649-658

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:649-658