An information-theoretic approach for the evaluation of surrogate endpoints based on causal inference
Ariel Alonso,
Wim Van der Elst,
Geert Molenberghs,
Marc Buyse and
Tomasz Burzykowski
Biometrics, 2016, vol. 72, issue 3, 669-677
Abstract:
type="main" xml:lang="en">
In this work a new metric of surrogacy, the so-called individual causal association (ICA), is introduced using information-theoretic concepts and a causal inference model for a binary surrogate and true endpoint. The ICA has a simple and appealing interpretation in terms of uncertainty reduction and, in some scenarios, it seems to provide a more coherent assessment of the validity of a surrogate than existing measures. The identifiability issues are tackled using a two-step procedure. In the first step, the region of the parametric space of the distribution of the potential outcomes, compatible with the data at hand, is geometrically characterized. Further, in a second step, a Monte Carlo approach is proposed to study the behavior of the ICA on the previous region. The method is illustrated using data from the Collaborative Initial Glaucoma Treatment Study. A newly developed and user-friendly R package Surrogate is provided to carry out the evaluation exercise.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:3:p:669-677
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().