EconPapers    
Economics at your fingertips  
 

Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data

Jesper Møller, Mohammad Ghorbani and Ege Rubak

Biometrics, 2016, vol. 72, issue 3, 687-696

Abstract: type="main" xml:lang="en">

We show how a spatial point process, where to each point there is associated a random quantitative mark, can be identified with a spatio-temporal point process specified by a conditional intensity function. For instance, the points can be tree locations, the marks can express the size of trees, and the conditional intensity function can describe the distribution of a tree (i.e., its location and size) conditionally on the larger trees. This enable us to construct parametric statistical models which are easily interpretable and where maximum-likelihood-based inference is tractable.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:3:p:687-696

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:687-696