Modeling overdispersion heterogeneity in differential expression analysis using mixtures
Elisabetta Bonafede,
Franck Picard,
Stéphane Robin and
Cinzia Viroli
Biometrics, 2016, vol. 72, issue 3, 804-814
Abstract:
type="main" xml:lang="en">
Next-generation sequencing technologies now constitute a method of choice to measure gene expression. Data to analyze are read counts, commonly modeled using negative binomial distributions. A relevant issue associated with this probabilistic framework is the reliable estimation of the overdispersion parameter, reinforced by the limited number of replicates generally observable for each gene. Many strategies have been proposed to estimate this parameter, but when differential analysis is the purpose, they often result in procedures based on plug-in estimates, and we show here that this discrepancy between the estimation framework and the testing framework can lead to uncontrolled type-I errors. Instead, we propose a mixture model that allows each gene to share information with other genes that exhibit similar variability. Three consistent statistical tests are developed for differential expression analysis. We show through a wide simulation study that the proposed method improves the sensitivity of detecting differentially expressed genes with respect to the common procedures, since it reaches the nominal value for the type-I error, while keeping elevate discriminative power between differentially and not differentially expressed genes. The method is finally illustrated on prostate cancer RNA-Seq data.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:3:p:804-814
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().