Estimating optimal shared-parameter dynamic regimens with application to a multistage depression clinical trial
Bibhas Chakraborty,
Palash Ghosh,
Erica E. M. Moodie and
A. John Rush
Biometrics, 2016, vol. 72, issue 3, 865-876
Abstract:
type="main" xml:lang="en">
A dynamic treatment regimen consists of decision rules that recommend how to individualize treatment to patients based on available treatment and covariate history. In many scientific domains, these decision rules are shared across stages of intervention. As an illustrative example, we discuss STAR D, a multistage randomized clinical trial for treating major depression. Estimating these shared decision rules often amounts to estimating parameters indexing the decision rules that are shared across stages. In this article, we propose a novel simultaneous estimation procedure for the shared parameters based on Q-learning. We provide an extensive simulation study to illustrate the merit of the proposed method over simple competitors, in terms of the treatment allocation matching of the procedure with the “oracle” procedure, defined as the one that makes treatment recommendations based on the true parameter values as opposed to their estimates. We also look at bias and mean squared error of the individual parameter-estimates as secondary metrics. Finally, we analyze the STAR D data using the proposed method.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:3:p:865-876
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().