EconPapers    
Economics at your fingertips  
 

A novel random effect model for GWAS meta-analysis and its application to trans-ethnic meta-analysis

Jingchunzi Shi and Seunggeun Lee

Biometrics, 2016, vol. 72, issue 3, 945-954

Abstract: type="main" xml:lang="en">

Meta-analysis of trans-ethnic genome-wide association studies (GWAS) has proven to be a practical and profitable approach for identifying loci that contribute to the risk of complex diseases. However, the expected genetic effect heterogeneity cannot easily be accommodated through existing fixed-effects and random-effects methods. In response, we propose a novel random effect model for trans-ethnic meta-analysis with flexible modeling of the expected genetic effect heterogeneity across diverse populations. Specifically, we adopt a modified random effect model from the kernel regression framework, in which genetic effect coefficients are random variables whose correlation structure reflects the genetic distances across ancestry groups. In addition, we use the adaptive variance component test to achieve robust power regardless of the degree of genetic effect heterogeneity. Simulation studies show that our proposed method has well-calibrated type I error rates at very stringent significance levels and can improve power over the traditional meta-analysis methods. We reanalyzed the published type 2 diabetes GWAS meta-analysis (Consortium et al., 2014) and successfully identified one additional SNP that clearly exhibits genetic effect heterogeneity across different ancestry groups. Furthermore, our proposed method provides scalable computing time for genome-wide datasets, in which an analysis of one million SNPs would require less than 3 hours.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:3:p:945-954

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:945-954