EconPapers    
Economics at your fingertips  
 

A Bayesian credible subgroups approach to identifying patient subgroups with positive treatment effects

Patrick M. Schnell, Qi Tang, Walter W. Offen and Bradley P. Carlin

Biometrics, 2016, vol. 72, issue 4, 1026-1036

Abstract: Many new experimental treatments benefit only a subset of the population. Identifying the baseline covariate profiles of patients who benefit from such a treatment, rather than determining whether or not the treatment has a population‐level effect, can substantially lessen the risk in undertaking a clinical trial and expose fewer patients to treatments that do not benefit them. The standard analyses for identifying patient subgroups that benefit from an experimental treatment either do not account for multiplicity, or focus on testing for the presence of treatment–covariate interactions rather than the resulting individualized treatment effects. We propose a Bayesian credible subgroups method to identify two bounding subgroups for the benefiting subgroup: one for which it is likely that all members simultaneously have a treatment effect exceeding a specified threshold, and another for which it is likely that no members do. We examine frequentist properties of the credible subgroups method via simulations and illustrate the approach using data from an Alzheimer's disease treatment trial. We conclude with a discussion of the advantages and limitations of this approach to identifying patients for whom the treatment is beneficial.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/biom.12522

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:4:p:1026-1036

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1026-1036