EconPapers    
Economics at your fingertips  
 

Sieve estimation of Cox models with latent structures

Yongxiu Cao, Jian Huang, Yanyan Liu and Xingqiu Zhao

Biometrics, 2016, vol. 72, issue 4, 1086-1097

Abstract: This article considers sieve estimation in the Cox model with an unknown regression structure based on right‐censored data. We propose a semiparametric pursuit method to simultaneously identify and estimate linear and nonparametric covariate effects based on B‐spline expansions through a penalized group selection method with concave penalties. We show that the estimators of the linear effects and the nonparametric component are consistent. Furthermore, we establish the asymptotic normality of the estimator of the linear effects. To compute the proposed estimators, we develop a modified blockwise majorization descent algorithm that is efficient and easy to implement. Simulation studies demonstrate that the proposed method performs well in finite sample situations. We also use the primary biliary cirrhosis data to illustrate its application.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/biom.12529

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:4:p:1086-1097

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1086-1097