Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models
Yih‐Huei Huang,
Wen‐Han Hwang and
Fei‐Yin Chen
Biometrics, 2016, vol. 72, issue 4, 1136-1144
Abstract:
Longitudinal covariates in survival models are generally analyzed using random effects models. By framing the estimation of these survival models as a functional measurement error problem, semiparametric approaches such as the conditional score or the corrected score can be applied to find consistent estimators for survival model parameters without distributional assumptions on the random effects. However, in order to satisfy the standard assumptions of a survival model, the semiparametric methods in the literature only use covariate data before each event time. This suggests that these methods may make inefficient use of the longitudinal data. We propose an extension of these approaches that follows a generalization of Rao–Blackwell theorem. A Monte Carlo error augmentation procedure is developed to utilize the entirety of longitudinal information available. The efficiency improvement of the proposed semiparametric approach is confirmed theoretically and demonstrated in a simulation study. A real data set is analyzed as an illustration of a practical application.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.12510
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:72:y:2016:i:4:p:1136-1144
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().