EconPapers    
Economics at your fingertips  
 

Parametric modeling of quantile regression coefficient functions with censored and truncated data

Paolo Frumento and Matteo Bottai

Biometrics, 2017, vol. 73, issue 4, 1179-1188

Abstract: Quantile regression coefficient functions describe how the coefficients of a quantile regression model depend on the order of the quantile. A method for parametric modeling of quantile regression coefficient functions was discussed in a recent article. The aim of the present work is to extend the existing framework to censored and truncated data. We propose an estimator and derive its asymptotic properties. We discuss goodness‐of‐fit measures, present simulation results, and analyze the data that motivated this article. The described estimator has been implemented in the R package qrcm.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1111/biom.12675

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:73:y:2017:i:4:p:1179-1188

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1179-1188