EconPapers    
Economics at your fingertips  
 

Penalized nonlinear mixed effects model to identify biomarkers that predict disease progression

Huaihou Chen, Donglin Zeng and Yuanjia Wang

Biometrics, 2017, vol. 73, issue 4, 1343-1354

Abstract: Precise modeling of disease progression in neurodegenerative disorders may enable early intervention before clinical manifestation of a disease, which is crucial since early intervention at the premanifest stage is expected to be more effective. Neuroimaging biomarkers are indicative of the underlying disease pathology and may be used to predict future disease occurrence at the premanifest stage. As observed in many pivotal studies, longitudinal measurements of clinical outcomes, such as motor or cognitive symptoms, often present nonlinear sigmoid shapes over time, where the inflection points of the trajectories mark a meaningful time in disease progression. Therefore, to identify neuroimaging biomarkers predicting disease progression, we propose a nonlinear mixed effects model based on a sigmoid function to predict longitudinal clinical outcomes, and associate a linear combination of neuroimaging biomarkers with subject‐specific inflection points. Based on an expectation‐maximization (EM) algorithm, we propose a method that can fit a nonlinear model with many potentially correlated biomarkers for random inflection points while achieving computational stability. Variable selection is introduced in the algorithm in order to identify important biomarkers of disease progression and to reduce prediction variability. We apply the proposed method to the data from the Predictors of Huntington's Disease study to select brain subcortical regional volumes predictive of the inflection points of the motor and cognitive function trajectories. Our results reveal that brain atrophy in the striatum and expansion of the ventricular system are highly predictive of the inflection points. Furthermore, these inflection points may precede clinically defined disease onset by as early as a decade and thus may be useful biomarkers as early signs of Huntington's Disease onset.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.12663

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:73:y:2017:i:4:p:1343-1354

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1343-1354