EconPapers    
Economics at your fingertips  
 

Cox regression with dependent error in covariates

Yijian Huang and Ching†Yun Wang

Biometrics, 2018, vol. 74, issue 1, 118-126

Abstract: Many survival studies have error†contaminated covariates due to the lack of a gold standard of measurement. Furthermore, the error distribution can depend on the true covariates but the structure may be difficult to characterize; heteroscedasticity is a common manifestation. We suggest a novel dependent measurement error model with minimal assumptions on the dependence structure, and propose a new functional modeling method for Cox regression when an instrumental variable is available. This proposal accommodates much more general error contamination than existing approaches including nonparametric correction methods of Huang and Wang (2000, Journal of the American Statistical Association 95, 1209–1219; 2006, Statistica Sinica 16, 861–881). The estimated regression coefficients are consistent and asymptotically normal, and a consistent variance estimate is provided for inference. Simulations demonstrate that the procedure performs well even under substantial error contamination. Illustration with a clinical study is provided.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.12741

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:1:p:118-126

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:118-126