EconPapers    
Economics at your fingertips  
 

Functional multiple indicators, multiple causes measurement error models

Carmen D. Tekwe, Roger S. Zoh, Fuller W. Bazer, Guoyao Wu and Raymond J. Carroll

Biometrics, 2018, vol. 74, issue 1, 127-134

Abstract: Objective measures of oxygen consumption and carbon dioxide production by mammals are used to predict their energy expenditure. Since energy expenditure is not directly observable, it can be viewed as a latent construct with multiple physical indirect measures such as respiratory quotient, volumetric oxygen consumption, and volumetric carbon dioxide production. Metabolic rate is defined as the rate at which metabolism occurs in the body. Metabolic rate is also not directly observable. However, heat is produced as a result of metabolic processes within the body. Therefore, metabolic rate can be approximated by heat production plus some errors. While energy expenditure and metabolic rates are correlated, they are not equivalent. Energy expenditure results from physical function, while metabolism can occur within the body without the occurrence of physical activities. In this manuscript, we present a novel approach for studying the relationship between metabolic rate and indicators of energy expenditure. We do so by extending our previous work on MIMIC ME models to allow responses that are sparsely observed functional data, defining the sparse functional multiple indicators, multiple cause measurement error (FMIMIC ME) models. The mean curves in our proposed methodology are modeled using basis splines. A novel approach for estimating the variance of the classical measurement error based on functional principal components is presented. The model parameters are estimated using the EM algorithm and a discussion of the model's identifiability is provided. We show that the defined model is not a trivial extension of longitudinal or functional data methods, due to the presence of the latent construct. Results from its application to data collected on Zucker diabetic fatty rats are provided. Simulation results investigating the properties of our approach are also presented.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.12706

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:1:p:127-134

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:127-134