EconPapers    
Economics at your fingertips  
 

Multi†subgroup gene screening using semi†parametric hierarchical mixture models and the optimal discovery procedure: Application to a randomized clinical trial in multiple myeloma

Shigeyuki Matsui, Hisashi Noma, Pingping Qu, Yoshio Sakai, Kota Matsui, Christoph Heuck and John Crowley

Biometrics, 2018, vol. 74, issue 1, 313-320

Abstract: This article proposes an efficient approach to screening genes associated with a phenotypic variable of interest in genomic studies with subgroups. In order to capture and detect various association profiles across subgroups, we flexibly estimate the underlying effect size distribution across subgroups using a semi†parametric hierarchical mixture model for subgroup†specific summary statistics from independent subgroups. We then perform gene ranking and selection using an optimal discovery procedure based on the fitted model with control of false discovery rate. Efficiency of the proposed approach, compared with that based on standard regression models with covariates representing subgroups, is demonstrated through application to a randomized clinical trial with microarray gene expression data in multiple myeloma, and through a simulation experiment.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.12716

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:1:p:313-320

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:313-320