A local agreement pattern measure based on hazard functions for survival outcomes
Tian Dai,
Ying Guo,
Limin Peng and
Amita K. Manatunga
Biometrics, 2018, vol. 74, issue 1, 86-99
Abstract:
Assessing agreement is often of interest in biomedical and clinical research when measurements are obtained on the same subjects by different raters or methods. Most classical agreement methods have been focused on global summary statistics, which cannot be used to describe various local agreement patterns. The objective of this work is to study the local agreement pattern between two continuous measurements subject to censoring. In this article, we propose a new agreement measure based on bivariate hazard functions to characterize the local agreement pattern between two correlated survival outcomes. The proposed measure naturally accommodates censored observations, fully captures the dependence structure between bivariate survival times and provides detailed information on how the strength of agreement evolves over time. We develop a nonparametric estimation method for the proposed local agreement pattern measure and study theoretical properties including strong consistency and asymptotical normality. We then evaluate the performance of the estimator through simulation studies and illustrate the method using a prostate cancer data example.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.12740
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:1:p:86-99
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().