EconPapers    
Economics at your fingertips  
 

Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes

Hyokyoung G. Hong, Xuerong Chen, David C. Christiani and Yi Li

Biometrics, 2018, vol. 74, issue 2, 421-429

Abstract: Modern biomedical studies have yielded abundant survival data with high†throughput predictors. Variable screening is a crucial first step in analyzing such data, for the purpose of identifying predictive biomarkers, understanding biological mechanisms, and making accurate predictions. To nonparametrically quantify the relevance of each candidate variable to the survival outcome, we propose integrated powered density (IPOD), which compares the differences in the covariate†stratified distribution functions. The proposed new class of statistics, with a flexible weighting scheme, is general and includes the Kolmogorov statistic as a special case. Moreover, the method does not rely on rigid regression model assumptions and can be easily implemented. We show that our method possesses sure screening properties, and confirm the utility of the proposal with extensive simulation studies. We apply the method to analyze a multiple myeloma study on detecting gene signatures for cancer patients’ survival.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/biom.12820

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:2:p:421-429

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:421-429