EconPapers    
Economics at your fingertips  
 

Fully Bayesian spectral methods for imaging data

Brian J. Reich, Joseph Guinness, Simon N. Vandekar, Russell T. Shinohara and Ana†Maria Staicu

Biometrics, 2018, vol. 74, issue 2, 645-652

Abstract: Medical imaging data with thousands of spatially correlated data points are common in many fields. Methods that account for spatial correlation often require cumbersome matrix evaluations which are prohibitive for data of this size, and thus current work has either used low†rank approximations or analyzed data in blocks. We propose a method that accounts for nonstationarity, functional connectivity of distant regions of interest, and local signals, and can be applied to large multi†subject datasets using spectral methods combined with Markov Chain Monte Carlo sampling. We illustrate using simulated data that properly accounting for spatial dependence improves precision of estimates and yields valid statistical inference. We apply the new approach to study associations between cortical thickness and Alzheimer's disease, and find several regions of the cortex where patients with Alzheimer's disease are thinner on average than healthy controls.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.12782

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:2:p:645-652

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:645-652