Fully Bayesian spectral methods for imaging data
Brian J. Reich,
Joseph Guinness,
Simon N. Vandekar,
Russell T. Shinohara and
Ana†Maria Staicu
Biometrics, 2018, vol. 74, issue 2, 645-652
Abstract:
Medical imaging data with thousands of spatially correlated data points are common in many fields. Methods that account for spatial correlation often require cumbersome matrix evaluations which are prohibitive for data of this size, and thus current work has either used low†rank approximations or analyzed data in blocks. We propose a method that accounts for nonstationarity, functional connectivity of distant regions of interest, and local signals, and can be applied to large multi†subject datasets using spectral methods combined with Markov Chain Monte Carlo sampling. We illustrate using simulated data that properly accounting for spatial dependence improves precision of estimates and yields valid statistical inference. We apply the new approach to study associations between cortical thickness and Alzheimer's disease, and find several regions of the cortex where patients with Alzheimer's disease are thinner on average than healthy controls.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.12782
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:2:p:645-652
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().