A C†index for recurrent event data: Application to hospitalizations among dialysis patients
Sehee Kim,
Douglas E. Schaubel and
Keith P. McCullough
Biometrics, 2018, vol. 74, issue 2, 734-743
Abstract:
We propose a C†index (index of concordance) applicable to recurrent event data. The present work addresses the dearth of measures for quantifying a regression model's ability to discriminate with respect to recurrent event risk. The data which motivated the methods arise from the Dialysis Outcomes and Practice Patterns Study (DOPPS), a long†running prospective international study of end†stage renal disease patients on hemodialysis. We derive the theoretical properties of the measure under the proportional rates model (Lin et al., 2000), and propose computationally convenient inference procedures based on perturbed influence functions. The methods are shown through simulations to perform well in moderate samples. Analysis of hospitalizations among a cohort of DOPPS patients reveals substantial improvement in discrimination upon adding country indicators to a model already containing basic clinical and demographic covariates, and further improvement upon adding a relatively large set of comorbidity indicators.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.12761
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:2:p:734-743
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().