EconPapers    
Economics at your fingertips  
 

An approximate joint model for multiple paired longitudinal outcomes and time‐to‐event data

Angelo F. Elmi, Katherine L. Grantz and Paul S. Albert

Biometrics, 2018, vol. 74, issue 3, 1112-1119

Abstract: Joint modeling of multivariate paired longitudinal data and time‐to‐event data presents computational challenges that supersede full likelihood estimation due to the large dimensional random effects vector needed to capture correlation due to clustering with respect to pairs, subjects, and outcomes. We propose an alternative, computationally simpler approach to estimation of complex shared parameter models where missing data is imputed based on the Posterior Predictive Distribution from a Conditional Linear Model (CLM) approximation. Existing methods for complete data are then implemented to obtain estimates of the event time model parameters. Our method is applied to examine the effects of discordant growth in anthropometric measures of longitudinal fetal growth in twin fetuses and the timing of birth. Simulation results are presented to show that our method performs relatively well with moderate measurement errors under certain CLM approximations.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.12862

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:3:p:1112-1119

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1112-1119