Semiparametric regression analysis of interval‐censored data with informative dropout
Fei Gao,
Donglin Zeng and
Dan‐Yu Lin
Biometrics, 2018, vol. 74, issue 4, 1213-1222
Abstract:
Interval‐censored data arise when the event time of interest can only be ascertained through periodic examinations. In medical studies, subjects may not complete the examination schedule for reasons related to the event of interest. In this article, we develop a semiparametric approach to adjust for such informative dropout in regression analysis of interval‐censored data. Specifically, we propose a broad class of joint models, under which the event time of interest follows a transformation model with a random effect and the dropout time follows a different transformation model but with the same random effect. We consider nonparametric maximum likelihood estimation and develop an EM algorithm that involves simple and stable calculations. We prove that the resulting estimators of the regression parameters are consistent, asymptotically normal, and asymptotically efficient with a covariance matrix that can be consistently estimated through profile likelihood. In addition, we show how to consistently estimate the survival function when dropout represents voluntary withdrawal and the cumulative incidence function when dropout is an unavoidable terminal event. Furthermore, we assess the performance of the proposed numerical and inferential procedures through extensive simulation studies. Finally, we provide an application to data on the incidence of diabetes from a major epidemiological cohort study.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.12911
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:4:p:1213-1222
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().