EconPapers    
Economics at your fingertips  
 

Threshold regression to accommodate a censored covariate

Jing Qian, Sy Han Chiou, Jacqueline E. Maye, Folefac Atem, Keith A. Johnson and Rebecca A. Betensky

Biometrics, 2018, vol. 74, issue 4, 1261-1270

Abstract: In several common study designs, regression modeling is complicated by the presence of censored covariates. Examples of such covariates include maternal age of onset of dementia that may be right censored in an Alzheimer's amyloid imaging study of healthy subjects, metabolite measurements that are subject to limit of detection censoring in a case‐control study of cardiovascular disease, and progressive biomarkers whose baseline values are of interest, but are measured post‐baseline in longitudinal neuropsychological studies of Alzheimer's disease. We propose threshold regression approaches for linear regression models with a covariate that is subject to random censoring. Threshold regression methods allow for immediate testing of the significance of the effect of a censored covariate. In addition, they provide for unbiased estimation of the regression coefficient of the censored covariate. We derive the asymptotic properties of the resulting estimators under mild regularity conditions. Simulations demonstrate that the proposed estimators have good finite‐sample performance, and often offer improved efficiency over existing methods. We also derive a principled method for selection of the threshold. We illustrate the approach in application to an Alzheimer's disease study that investigated brain amyloid levels in older individuals, as measured through positron emission tomography scans, as a function of maternal age of dementia onset, with adjustment for other covariates. We have developed an R package, censCov, for implementation of our method, available at CRAN.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/biom.12922

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:4:p:1261-1270

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1261-1270