Varying‐coefficient semiparametric model averaging prediction
Jialiang Li,
Xiaochao Xia,
Weng Kee Wong and
David Nott
Biometrics, 2018, vol. 74, issue 4, 1417-1426
Abstract:
Forecasting and predictive inference are fundamental data analysis tasks. Most studies employ parametric approaches making strong assumptions about the data generating process. On the other hand, while nonparametric models are applied, it is sometimes found in situations involving low signal to noise ratios or large numbers of covariates that their performance is unsatisfactory. We propose a new varying‐coefficient semiparametric model averaging prediction (VC‐SMAP) approach to analyze large data sets with abundant covariates. Performance of the procedure is investigated with numerical examples. Even though model averaging has been extensively investigated in the literature, very few authors have considered averaging a set of semiparametric models. Our proposed model averaging approach provides more flexibility than parametric methods, while being more stable and easily implemented than fully multivariate nonparametric varying‐coefficient models. We supply numerical evidence to justify the effectiveness of our methodology.
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/biom.12904
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:74:y:2018:i:4:p:1417-1426
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().