Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways
Yunpeng Zhao,
Qing Pan and
Chengan Du
Biometrics, 2019, vol. 75, issue 1, 222-234
Abstract:
When searching for gene pathways leading to specific disease outcomes, additional information on gene characteristics is often available that may facilitate to differentiate genes related to the disease from irrelevant background when connections involving both types of genes are observed and their relationships to the disease are unknown. We propose method to single out irrelevant background genes with the help of auxiliary information through a logistic regression, and cluster relevant genes into cohesive groups using the adjacency matrix. Expectation–maximization algorithm is modified to maximize a joint pseudo‐likelihood assuming latent indicators for relevance to the disease and latent group memberships as well as Poisson or multinomial distributed link numbers within and between groups. A robust version allowing arbitrary linkage patterns within the background is further derived. Asymptotic consistency of label assignments under the stochastic blockmodel is proven. Superior performance and robustness in finite samples are observed in simulation studies. The proposed robust method identifies previously missed gene sets underlying autism related neurological diseases using diverse data sources including de novo mutations, gene expressions, and protein–protein interactions.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.12955
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:1:p:222-234
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().