EconPapers    
Economics at your fingertips  
 

Generalized linear models with linear constraints for microbiome compositional data

Jiarui Lu, Pixu Shi and Hongzhe Li

Biometrics, 2019, vol. 75, issue 1, 235-244

Abstract: Motivated by regression analysis for microbiome compositional data, this article considers generalized linear regression analysis with compositional covariates, where a group of linear constraints on regression coefficients are imposed to account for the compositional nature of the data and to achieve subcompositional coherence. A penalized likelihood estimation procedure using a generalized accelerated proximal gradient method is developed to efficiently estimate the regression coefficients. A de‐biased procedure is developed to obtain asymptotically unbiased and normally distributed estimates, which leads to valid confidence intervals of the regression coefficients. Simulations results show the correctness of the coverage probability of the confidence intervals and smaller variances of the estimates when the appropriate linear constraints are imposed. The methods are illustrated by a microbiome study in order to identify bacterial species that are associated with inflammatory bowel disease (IBD) and to predict IBD using fecal microbiome.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/biom.12956

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:1:p:235-244

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:235-244