Flexible parametric approach to classical measurement error variance estimation without auxiliary data
Aurélie Bertrand,
Ingrid Van Keilegom () and
Catherine Legrand
Biometrics, 2019, vol. 75, issue 1, 297-307
Abstract:
Measurement error in the continuous covariates of a model generally yields bias in the estimators. It is a frequent problem in practice, and many correction procedures have been developed for different classes of models. However, in most cases, some information about the measurement error distribution is required. When neither validation nor auxiliary data (e.g., replicated measurements) are available, this specification turns out to be tricky. In this article, we develop a flexible likelihood‐based procedure to estimate the variance of classical additive error of Gaussian distribution, without additional information, when the covariate has compact support. The performance of this estimator is investigated both in an asymptotic way and through finite sample simulations. The usefulness of the obtained estimator when using the simulation extrapolation (SIMEX) algorithm, a widely used correction method, is then analyzed in the Cox proportional hazards model through other simulations. Finally, the whole procedure is illustrated on real data.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/biom.12960
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:1:p:297-307
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().