Estimations of the joint distribution of failure time and failure type with dependent truncation
Yu‐Jen Cheng,
Mei‐Cheng Wang and
Chang‐Yu Tsai
Biometrics, 2019, vol. 75, issue 2, 428-438
Abstract:
In biomedical studies involving survival data, the observation of failure times is sometimes accompanied by a variable which describes the type of failure event (Kalbeisch and Prentice, 2002). This paper considers two specific challenges which are encountered in the joint analysis of failure time and failure type. First, because the observation of failure times is subject to left truncation, the sampling bias extends to the failure type which is associated with the failure time. An analytical challenge is to deal with such sampling bias. Second, in case that the joint distribution of failure time and failure type is allowed to have a temporal trend, it is of interest to estimate the joint distribution of failure time and failure type nonparametrically. This paper develops statistical approaches to address these two analytical challenges on the basis of prevalent survival data. The proposed approaches are examined through simulation studies and illustrated by using a real data set.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13017
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:2:p:428-438
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().