EconPapers    
Economics at your fingertips  
 

Distribution‐free estimation of local growth rates around interval censored anchoring events

Chenghao Chu, Ying Zhang and Wanzhu Tu

Biometrics, 2019, vol. 75, issue 2, 463-474

Abstract: Biological processes are usually defined on timelines that are anchored by specific events. For example, cancer growth is typically measured by the change in tumor size from the time of oncogenesis. In the absence of such anchoring events, longitudinal assessments of the outcome lose their temporal reference. In this paper, we considered the estimation of local change rates in the outcomes when the anchoring events are interval‐censored. Viewing the subject‐specific anchoring event times as random variables from an unspecified distribution, we proposed a distribution‐free estimation method for the local growth rates around the unobserved anchoring events. We expressed the rate parameters as stochastic functionals of the anchoring time distribution and showed that under mild regularity conditions, consistent and asymptotically normal estimates of the rate parameters could be achieved, with a n convergence rate. We conducted a carefully designed simulation study to evaluate the finite sample performance of the method. To motivate and illustrate the use of the proposed method, we estimated the skeletal growth rates of male and female adolescents, before and after the unobserved pubertal growth spurt (PGS) times.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13015

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:2:p:463-474

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:463-474