A smoothing‐based goodness‐of‐fit test of covariance for functional data
Stephanie T. Chen,
Luo Xiao and
Ana‐Maria Staicu
Biometrics, 2019, vol. 75, issue 2, 562-571
Abstract:
Functional data methods are often applied to longitudinal data as they provide a more flexible way to capture dependence across repeated observations. However, there is no formal testing procedure to determine if functional methods are actually necessary. We propose a goodness‐of‐fit test for comparing parametric covariance functions against general nonparametric alternatives for both irregularly observed longitudinal data and densely observed functional data. We consider a smoothing‐based test statistic and approximate its null distribution using a bootstrap procedure. We focus on testing a quadratic polynomial covariance induced by a linear mixed effects model and the method can be used to test any smooth parametric covariance function. Performance and versatility of the proposed test is illustrated through a simulation study and three data applications.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13005
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:2:p:562-571
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().