EconPapers    
Economics at your fingertips  
 

High dimensional mediation analysis with latent variables

Andriy Derkach, Ruth M. Pfeiffer, Ting‐Huei Chen and Joshua N. Sampson

Biometrics, 2019, vol. 75, issue 3, 745-756

Abstract: We propose a model for high dimensional mediation analysis that includes latent variables. We describe our model in the context of an epidemiologic study for incident breast cancer with one exposure and a large number of biomarkers (i.e., potential mediators). We assume that the exposure directly influences a group of latent, or unmeasured, factors which are associated with both the outcome and a subset of the biomarkers. The biomarkers associated with the latent factors linking the exposure to the outcome are considered “mediators.” We derive the likelihood for this model and develop an expectation‐maximization algorithm to maximize an L1‐penalized version of this likelihood to limit the number of factors and associated biomarkers. We show that the resulting estimates are consistent and that the estimates of the nonzero parameters have an asymptotically normal distribution. In simulations, procedures based on this new model can have significantly higher power for detecting the mediating biomarkers compared with the simpler approaches. We apply our method to a study that evaluates the relationship between body mass index, 481 metabolic measurements, and estrogen‐receptor positive breast cancer.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/biom.13053

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:3:p:745-756

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:745-756