Prediction analysis for microbiome sequencing data
Tao Wang,
Can Yang and
Hongyu Zhao
Biometrics, 2019, vol. 75, issue 3, 875-884
Abstract:
One goal of human microbiome studies is to relate host traits with human microbiome compositions. The analysis of microbial community sequencing data presents great statistical challenges, especially when the samples have different library sizes and the data are overdispersed with many zeros. To address these challenges, we introduce a new statistical framework, called predictive analysis in metagenomics via inverse regression (PAMIR), to analyze microbiome sequencing data. Within this framework, an inverse regression model is developed for overdispersed microbiota counts given the trait, and then a prediction rule is constructed by taking advantage of the dimension‐reduction structure in the model. An efficient Monte Carlo expectation‐maximization algorithm is proposed for maximum likelihood estimation. The method is further generalized to accommodate other types of covariates. We demonstrate the advantages of PAMIR through simulations and two real data examples.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/biom.13061
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:3:p:875-884
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().