Empirical‐likelihood‐based criteria for model selection on marginal analysis of longitudinal data with dropout missingness
Chixiang Chen,
Biyi Shen,
Lijun Zhang,
Yuan Xue and
Ming Wang
Biometrics, 2019, vol. 75, issue 3, 950-965
Abstract:
Longitudinal data are common in clinical trials and observational studies, where missing outcomes due to dropouts are always encountered. Under such context with the assumption of missing at random, the weighted generalized estimating equation (WGEE) approach is widely adopted for marginal analysis. Model selection on marginal mean regression is a crucial aspect of data analysis, and identifying an appropriate correlation structure for model fitting may also be of interest and importance. However, the existing information criteria for model selection in WGEE have limitations, such as separate criteria for the selection of marginal mean and correlation structures, unsatisfactory selection performance in small‐sample setups, and so forth. In particular, there are few studies to develop joint information criteria for selection of both marginal mean and correlation structures. In this work, by embedding empirical likelihood into the WGEE framework, we propose two innovative information criteria named a joint empirical Akaike information criterion and a joint empirical Bayesian information criterion, which can simultaneously select the variables for marginal mean regression and also correlation structure. Through extensive simulation studies, these empirical‐likelihood‐based criteria exhibit robustness, flexibility, and outperformance compared to the other criteria including the weighted quasi‐likelihood under the independence model criterion, the missing longitudinal information criterion, and the joint longitudinal information criterion. In addition, we provide a theoretical justification of our proposed criteria, and present two real data examples in practice for further illustration.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13060
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:3:p:950-965
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().