Integrative analysis of genetical genomics data incorporating network structures
Bin Gao,
Xu Liu,
Hongzhe Li and
Yuehua Cui
Biometrics, 2019, vol. 75, issue 4, 1063-1075
Abstract:
In a living organism, tens of thousands of genes are expressed and interact with each other to achieve necessary cellular functions. Gene regulatory networks contain information on regulatory mechanisms and the functions of gene expressions. Thus, incorporating network structures, discerned either through biological experiments or statistical estimations, could potentially increase the selection and estimation accuracy of genes associated with a phenotype of interest. Here, we considered a gene selection problem using gene expression data and the graphical structures found in gene networks. Because gene expression measurements are intermediate phenotypes between a trait and its associated genes, we adopted an instrumental variable regression approach. We treated genetic variants as instrumental variables to address the endogeneity issue. We proposed a two‐step estimation procedure. In the first step, we applied the LASSO algorithm to estimate the effects of genetic variants on gene expression measurements. In the second step, the projected expression measurements obtained from the first step were treated as input variables. A graph‐constrained regularization method was adopted to improve the efficiency of gene selection and estimation. We theoretically showed the selection consistency of the estimation method and derived the L ∞ bound of the estimates. Simulation and real data analyses were conducted to demonstrate the effectiveness of our method and to compare it with its counterparts.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13072
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:75:y:2019:i:4:p:1063-1075
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().